Tabla de derivadas e integrales

Realizada con pythontex usando sympy y pandas

Tabla de derivadas e integrales
Función Derivada Integral
f(x)=kf(x)=k f(x)=0f'(x)=0 kdx=kx+C\int k\, dx=k x+C
f(x)=xf(x)=x f(x)=1f'(x)=1 xdx=x22+C\int x\, dx=\frac{x^{2}}{2}+C
f(x)=xnf(x)=x^{n} f(x)=nxnxf'(x)=\frac{n x^{n}}{x} xndx=xn+1n+1+C\int x^{n}\, dx=\frac{x^{n + 1}}{n + 1}+C
f(x)=1xf(x)=\frac{1}{x} f(x)=1x2f'(x)=- \frac{1}{x^{2}} 1xdx=ln(x)+C\int \frac{1}{x}\, dx=\ln{\left(x \right)}+C
f(x)=xf(x)=\sqrt{x} f(x)=12xf'(x)=\frac{1}{2 \sqrt{x}} - xdx=2x323+C\int \sqrt{x}\, dx=\frac{2 x^{\frac{3}{2}}}{3}+C
f(x)=x1nf(x)=x^{\frac{1}{n}} f(x)=x1nnxf'(x)=\frac{x^{\frac{1}{n}}}{n x} x1ndx=x1+1n1+1n+C\int x^{\frac{1}{n}}\, dx=\frac{x^{1 + \frac{1}{n}}}{1 + \frac{1}{n}}+C
f(x)=axf(x)=a^{x} f(x)=axln(a)f'(x)=a^{x} \ln{\left(a \right)} axdx={axln(a)forln(a)0xotherwise+C\int a^{x}\, dx=\begin{cases} \frac{a^{x}}{\ln{\left(a \right)}} & \text{for}\: \ln{\left(a \right)} \neq 0 \\x & \text{otherwise} \end{cases}+C
f(x)=exf(x)=e^{x} - f(x)=exf'(x)=e^{x} - exdx=ex+C\int e^{x}\, dx=e^{x}+C
f(x)=sin(x)f(x)=\sin{\left(x \right)} f(x)=cos(x)f'(x)=\cos{\left(x \right)} - sin(x)dx=cos(x)+C\int \sin{\left(x \right)}\, dx=- \cos{\left(x \right)}+C
f(x)=cos(x)f(x)=\cos{\left(x \right)} f(x)=sin(x)f'(x)=- \sin{\left(x \right)} cos(x)dx=sin(x)+C\int \cos{\left(x \right)}\, dx=\sin{\left(x \right)}+C
f(x)=tan(x)f(x)=\tan{\left(x \right)} f(x)=tan2(x)+1f'(x)=\tan^{2}{\left(x \right)} + 1 tan(x)dx=ln(cos(x))+C\int \tan{\left(x \right)}\, dx=- \ln{\left(\cos{\left(x \right)} \right)}+C
f(x)=cot(x)f(x)=\cot{\left(x \right)} f(x)=cot2(x)1f'(x)=- \cot^{2}{\left(x \right)} - 1 cot(x)dx=ln(sin(x))+C\int \cot{\left(x \right)}\, dx=\ln{\left(\sin{\left(x \right)} \right)}+C
f(x)=1cos2(x)f(x)=\frac{1}{\cos^{2}{\left(x \right)}} f(x)=2sin(x)cos3(x)f'(x)=\frac{2 \sin{\left(x \right)}}{\cos^{3}{\left(x \right)}} 1cos2(x)dx=sin(x)cos(x)+C\int \frac{1}{\cos^{2}{\left(x \right)}}\, dx=\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}+C
f(x)=1sin2(x)f(x)=\frac{1}{\sin^{2}{\left(x \right)}} f(x)=2cos(x)sin3(x)f'(x)=- \frac{2 \cos{\left(x \right)}}{\sin^{3}{\left(x \right)}} 1sin2(x)dx=cos(x)sin(x)+C\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx=- \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}+C
f(x)=11x2f(x)=\frac{1}{\sqrt{1 - x^{2}}} f(x)=x(1x2)32f'(x)=\frac{x}{\left(1 - x^{2}\right)^{\frac{3}{2}}} 11x2dx=asin(x)+C\int \frac{1}{\sqrt{1 - x^{2}}}\, dx=\operatorname{asin}{\left(x \right)}+C
f(x)=1x2+1f(x)=\frac{1}{x^{2} + 1} f(x)=2x(x2+1)2f'(x)=- \frac{2 x}{\left(x^{2} + 1\right)^{2}} 1x2+1dx=atan(x)+C\int \frac{1}{x^{2} + 1}\, dx=\operatorname{atan}{\left(x \right)}+C
f(x)=1a2+x2f(x)=\frac{1}{a^{2} + x^{2}} f(x)=2x(a2+x2)2f'(x)=- \frac{2 x}{\left(a^{2} + x^{2}\right)^{2}} 1a2+x2dx=atan(xa)a+C\int \frac{1}{a^{2} + x^{2}}\, dx=\frac{\operatorname{atan}{\left(\frac{x}{a} \right)}}{a}+C